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ABSTRACT

A quantitative structure-activity relationship (QSAR) study of selectivity in flotation of chalcopyrite from
pyrite for xanthates and xanthate derivatives was performed. The genetic function approximation (GFA)
algorithm was applied to select the descriptors and to generate the correlation models. Three combina-
tions of topological, structural, physicochemical, spatial and electronic descriptors were applied. Six QSAR
models with acceptable R? correlation coefficients and Q? cross-validation correlation coefficients
(R? > 0.75, Q* > 0.6) were developed. The models show that shadow area fraction YZ, LUMO density of car-
bonyl oxygen atom and Hirshfeld Fukui indices (+) of thiocarbonyl sulfur atom are the three most signif-
icant variables for the selectivity. The descriptor shadow area fraction YZ revealed that the planar
structure is important for the selectivity. The descriptors LUMO density of carbonyl oxygen atom and
Hirshfeld Fukui indices (+) of thiocarbonyl sulfur atom demonstrated LUMO distributions over carbonyl
oxygen atom should be large for favorable selectivity. This study concluded that selectivity of xanthates
and xanthate derivatives is determined by the strength of the dative bonding between copper atom on
the chalcopyrite surface and carbonyl oxygen atom of these collectors and the stability of the six-member

ring formed as a result.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Flotation separation chalcopyrite from pyrite has always been a
problem as it lacks effectively selective collectors. Traditionally,
xanthates are used as collector though a large amount of lime is
required to obtain a highly alkaline condition to achieve the sepa-
ration (Liu, 2004). Addition of lime, however, may depress chalco-
pyrite and other coexisting precious metal minerals and cause the
erosion of the equipments (Li and Sun, 2000). To overcome this
problem, several series of xanthate derivatives such as xanthogen
formats and thionocarbamates were invented. They work well in
the natural circumstances of copper sulfide ores, i.e. at pH of about
five sometimes, with high selectivity against pyrite (Crozier, 1978;
Aplan and Chander, 1987; Harris and Fishback, 1954; Seryakova
et al.,, 1975; Woods and Hope, 1999). Especially, in 1980s, based
on N-alkyl thionocarbamate N-alkoxycarbonyl thionocarbamates
were invented (Fu and Wang, 1987), the selectivity against pyrite
in neutral circumstance of which is much better than the former
ones.

All along, most of researches concerning xanthates and its
derivatives have been focused on their reaction mechanism with
sulfide minerals (Fairthorne et al., 1997, 1998; Nagaraj and Brinen,
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2001; Hope et al., 2005, 2007; Liu et al., 2006), while few tried to
reveal the relation between their structures and selectivity.
Ackerman et al. (2000) evaluated the influence of different substi-
tuent structures on the flotation of copper sulfide minerals and
pyrite and demonstrated a relation between them does exist. Liu
et al. (2008) found the relation of efficiencies of N-substituent
thionocarbamates with the properties such as energies and compo-
sitions of frontier molecular orbital and atomic charges and
explained why IBECTC and IBACTC have excellent collecting power
for copper sulfide minerals and selectivity against iron sulfide min-
erals on the basis of the order of electron-donating ability and
feedback-electron-accepting ability. In these work, the relations
obtained are mostly qualitative and without statistical validations.
This study was to systematically investigate the relation between
molecular structures and selectivity using quantitative structure-
activity relationship (QSAR) modeling technique.

A quantitative structure activity relationship (QSAR) is a method
that correlates an activity of a set of compounds quantitatively to
chemicals descriptors (structure or property) of those compounds,
which are generally obtained from experiments and quantum
chemical calculations. The exact form of the relationship between
structure and activity can be determined using a variety of statisti-
cal methods and computed molecular descriptors. QSAR has the
objective of prediction but maintaining a relationship to mechanis-
tic interpretation. Recent years, quantitative structure-activity
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relationship (QSAR) modeling has been applied extensively in phar-
maceutical chemistry and predictive toxicology (Yangali-Quintanil-
la et al., 2010; Wang et al., 2011; Mandal and Roy, 2009; lyer et al.,
2007; Moorthy et al., 2011). There are also several applications in
flotation. Natarajan and Nirdosh (2008) selected 10N-arylhydroxa-
mic acids from a virtual database of 3800 compounds with the
method of molecular similarity clustering and synthesized and
tested them as collectors for sphalerite. Hu et al., (2012) carried
out a QSAR research on the quaternary ammonium salt collectors
for bauxite reverse flotation and established a robust model.

The purpose of this work was to establish QSAR models of the
selectivity in flotation of chalcopyrite from pyrite for xanthates
and xanthate derivatives, including xanthogen formates and thio-
nocarbamates, and to give the models mechanistic interpretations
to reveal the favorable structural characteristics that enhance their
selectivity.

2. Methods
2.1. Data set

In this study the selectivity of 16 sample molecules including
xanthates, xanthogen formates and thionocarbamates was col-
lected from Fu et al. (1989). The values are reported in the form
of I, which was defined and calculated in accordance with Eq. (1):

I (100 — % Pyrite recovered) )
(100 — % Copper recovered)’

The names and structures of the 16 collectors were listed in
Table 1 with their I, values.

Generally, the data set is divided into a training set to develop
models and a test set to externally validate the constructed QSAR
models. As there are no such large data sets available, the set of
the 16 molecules were wholly used as the training set and as the
test set flotation results of a new set of 6 collectors were obtained.
The names and structures of the 6 collectors were listed in Table 2.

The individual-mineral flotation tests were carried out in the
SFG micro flotation cell (40 ml). Chalcopyrite and pyrite used in
this test were obtained from Donggua Hill copper mine, Anhui, Chi-
na. They were crushed with hammer wrapped up with cloth to
avoid contaminating the minerals before hand picking the pure
minerals, which, afterwards, were milled by porcelain ball mill
respectively. And the part with size of —150~ + 200 mesh of each
was used in flotation tests. Measured by X-ray Diffraction and
chemical elemental analysis, the purity of chalcopyrite is up to
85.32% containing trace amount of silica and fluorite while the pur-
ity of pyrite is as high as 93.56% and no other impurities are tested.
First, 2 g minerals were placed in the cell and added 30 ml distilled
water. Then, the mixture was agitated for 1 min. Collectors and
pine oil were added successively at the interval of 3 min and every
time the mixture was blended for 3 min. Last, the froth was col-
lected for 3 min. All tests were run at collector concentration of
1E—4 mol/l and frother concentration of 35 mg/l at natural pH.
The flow sheet of flotation is listed in Fig. 1.

Obviously, the two data sets were obtained in two different
experimental conditions. And their absolute values are not compa-
rable. So the external validation cannot be performed quantita-
tively in the general way. Actually, selectivity is different from
many other physical and chemical properties. Flotation results that
selectivity is obtained from depend largely on the artificial opera-
tions and they vary from person to person. Hence, even the values
of the predicted selectivity with externally validated models are
meaningless for the compounds investigated. The models of selec-
tivity only make sense qualitatively. Therefore, it is acceptable to
externally validate the models qualitatively with a data set from

a different source for the training set. And in this case, it was per-
formed through comparing the order of selectivity of the test set
predicted with QSAR models constructed with the one obtained
from flotation tests above.

2.2. Quantum chemical calculations

All molecules were built using the Material Studio 4.0 software.
The geometry optimizations and single point calculations were
both carried out with the Dmol3 module in Material Studio with
Generalized Gradient Approximation (GGA) functional PBE
(Perdew et al., 1996) and the basis set DND. Conformers were eval-
uated to make sure the optimized structures were the global-
minimum structures. Xanthates have no stable conformers and
the local-minimum structure is global-minimum. For xanthogen
formates and thionocarbamates, three most stable conformers
(Tobén et al., 2009) were all optimized and evaluated with the sin-
gle point energies to identify the global-minimum conformations.
Finally, vibrational analysis was performed to confirm the struc-
tures obtained.

In this study, QSAR models were developed using topological,
structural, physicochemical, spatial and electronic descriptors.
These descriptors were divided into three categories using differ-
ent combinations of descriptors. The first category was a combina-
tion of topological and structural descriptors while the second
category included structural, physicochemical, spatial and elec-
tronic descriptors. All these parameters were clubbed together in
the third category. All descriptors were calculated using Material
Studio 4.0 software and are listed categorically in Table 3. The
meanings of all descriptors are available in Material Studio 4.0
Tutorials (Accelrys, 2005).

2.3. QSAR analysis

The correlation coefficients for all pair of descriptor variables
used in the models were evaluated to identify highly correlated
descriptors in order to detect redundancy in the data set. Hence,
some highly correlated (r > 0.9) and constant descriptors were re-
moved from the further consideration. Furthermore, the models
with the descriptors that had cross-correlation coefficient of more
than 0.6 were also removed from consideration.

Typically, a ratio of five or more measured values for every
descriptor should be sought in order to prevent overfitting (Walker
et al., 2003). Hence, only two and three-parameter models were
considered in this study. For the development of equations, GFA
regression analysis was utilized with Material studio 4.0 software.

The genetic function approximation (GFA) algorithm is a useful
technique for searching in a large parameter space when the data
set is small. This method provides multiple models that are created
by evolving random initial models using different descriptors.
Models are improved by performing a crossover operation to
recombine terms providing better scoring models. The GFA algo-
rithm approach has a number of important advantages over other
techniques such as, it builds multiple models rather than a single
model, it automatically selects which features are to be used in
the models, and it can build models using either a linear relation
or higher order polynomial, splines, and Gaussians. (Ponnurengam
et al., 2006).

The application of GFA to QSAR/QSPR studies has been success-
fully used in a wide number of QSPR/QSAR research (Rogers and
Hopfinger, 1994; Shi et al., 1999; Hou et al., 2009; Couling et al.,
2006; Fan et al., 2001). This method combines Friedman’s multivar-
iable adaptive regression splines MARS (Friedman, 1991) and Hol-
land’s genetic algorithm (Holland, 1975). This method also used
the Friedman'’s lack-of-fit (LOF) along with the common R-squared,
cross validated R-squared, and F-value to evaluate the significance
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Table 1
Selectivity of the 16 sample molecules obtained from Fu et al. (1987).
Name Abbreviation Structure I, (Obsd)
Sodium isobutyl xanthate IBX - 0.02
+
\AD/R Na
Isopropyl xanthogen butyl formate IPB )\W uﬂ/\/\ 0.28
Ethyl xanthogen ethyl formate EXE AJQ‘D\A 0.25
Ethyl xanthogen phenyl formate EXPhenyl /\W 0.20
Isopropyl xanthogen phenyl formate [PPhenyl /L’uyﬁ 0.27
Isopropyl xanthogen ethyl formate IPE /\\iy[:y\ 0.18
N-Ethyl-O-isobutyl thionocarbamate IBETC J\iv\ 0.10
N-Ethoxy carbonyl-O-ethyl thionocarbamate EECTC /\M 0.22
N-Ethoxycarbonyl-O-amyl thionocarbamate AECTC j 0.53
A eV \i&\
N-Phenoxycarbonyl-O-ethyl thionocarbamate EPCTC 5 I 0.29
N-Ethoxycarbonyl-O-isobutyl thionocarbamate IBECTC % 0.21
N-Ethoxycarbonyl-O-isopropyl thionocarbamate IPECTC /\\M\ 0.39
N-methyl-O-isopropyl thionocarbamate IPMTC )\DIM 0.06
N-Ethoxycarbonyl-O-n-butyl thionocarbamate NBECTC /\/\iiy\ 0.36
Isopropyl xanthogen ethyl formate IPE )\Mﬂ/\ 0.30
N-Phenoxycarbonyl-O-isopropyl thionocarbamate IPPCTC B 0.39

Table 2
Names and structures of the 6 molecules of the test set.

Name

Abbreviation

Structure

Sodium isoamyl xanthate

Isobutyl xanthogen ethyl formate

N-Ethyl-O-isopropyl thionocarbamate

N-Ethoxycarbonyl-O-hexyl thionocarbamate

N-Amoxycarbonyl-O-amyl thionocarbamate

IAX -
PO
o \)\D’ﬂyﬂgf\
IPETC )\V[y\
o /\/\/\BM\
e W\EJLNLQ/\/\/

of the regression in the QSPR/QSAR model. In Material Studio, the
LOF measures the fitness of a GFA model during the evolution pro-
cess and is obtained using a slight variation of the original Friedman
formula as shown in Eq. (2).

LoF—__ B (2)

)]

where SSE is the sum of square errors, ¢ is the number of terms in
the model, other than the constant term, d is a scaled smoothing
parameter, p is the total number of descriptors contained in all
model terms (ignoring the constant term), M is the number of
samples in the training set, / is a safety factor, with the value of
0.99, to ensure that the denominator of the expression can never
become zero.
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Fig. 1. Flow sheet of flotation tests.

The scaled smoothing parameter, d, is related to the user-de-
fined smoothness parameter, R, by the expression shown in Eq.
(3), where cnax is the maximum equation length.

d— x(u> (3)

Cmax

The GFA algorithm was applied to the training set, using the
R-squared value as a scoring function and a LOF smoothness
parameter equal to 0.5. The program was run repeatedly varying
the length and order of the equations. The set of equations
returned were evaluated using the following parameters: (a) Fried-
man LOF measure, (b) R-squared, (c) cross-validated R-squared,
and (d) F-value. These values were calculated with the statistical
models in the Material Studio software.

3. Results and discussion
3.1. QSAR using topological and structural descriptors

3.1.1. Two-variable model

The following equation describes a two-variable model that has
the highest 12 coefficient among all the two-variable models gener-
ated and selected by GFA procedure using topological structural
descriptors.

Y = ~1.895761107 X13 + 0.324164845 X15
+0.773528810 (4)

Table 3
Categorical list of descriptors used in the development of QSAR models.

(n=16,R* = 0.767,R2; = 0.732,Q* = 0.666, Friedman LOF

=0.019,F = 21.456)

where X13 = shadow area fraction YZ, X15 = shadow ratio.

This equation could explain and predict 73.2% and 66.6% of the
variance of the selectivity, respectively. The Q? value resulting from
the cross-validations was similar to the r? value, which suggests
that the models are relatively stable (Sabljic, 2001; Hall et al,,
2002b). The selectivity increases with the increase of shadow ratio
and the decrease of shadow area fraction YZ. And shadow area frac-
tion YZ has the major contribution to the selectivity. Such two
descriptors are both molecular shadow indices, which help to char-
acterize the shape of molecules (Rohrbaugh and Jurs, 1987). Sha-
dow area fraction YZ is defined as the fraction of area of
molecular shadows in the YZ plane over the area of the enclosing
rectangle. Shadow ratio is the ratio of largest to smallest dimension
in X, Y, Z directions. The negative coefficient of shadow area frac-
tion YZ and the positive of shadow ratio imply that the planar
shape of the molecules favors the selectivity. This is consistent
with that O-isobutyl-N-ethoxycarbonyl-thionocarbamate (IBECTC)
could react chemically with copper atom on the surface of copper
sulfide minerals to form a stable six-member complex with
—C(=0)—N—C(=S)— group, thereby making IBECTC more powerful
than O-isobutyl-N-ethyl-thionocarbamate (IBETC) (Liu et al.,
2008).

3.1.2. Three-variable model

The following equation describes a three-variable model that
has the highest r? coefficient among all the 3-variable models gen-
erated and selected by GFA procedure using topological structural
descriptors.

Y =-1.619495019 X12 + 0.265202024 X14
—0.097914746 X19 + 0.701296898 (5)

(n=16,R* = 0.806,R>; = 0.758,Q* = 0.675, Friedman LOF

=0.018,F = 16.666)

where X12 = shadow area fraction YZ, X14 = shadow ratio, X19 = E-
state S_dssC.

Better explained variance (Rf,dj =0.758) and predictivity
(Q?=0.675) were shown by this three-variable model in compari-
son to Eq. (4). This equation is similar to the two-variable model
except including E-state S_dssC. Like Eq. (4), shadow area fraction
YZ show negative effects on selectivity and shadow ratio show

Category of
descriptors

Name of the descriptors

Structural

MW, Rotlbonds, Hbondacceptor, Hbonddonor, Chiralcenters, Atom count, Element count, Connolly surface area, Connolly surface occupied,

solvent surface area, solvent surface occupied, Cavity volume, Molecular flexibility, information content, Bond information, Complementary
information content, Structural information content, Atomic composition, Molecular area vdw, Molecular volume vdw, Molecular density,

Principal moments
Physicochemical AlogP, AlogP98, log P, MR, MolRef
Topological
indices
Electronic

Jx, Balaban index, Wiener index, Zagreb index, Kappa indices, Subgraph counts, Chi indices, Edge adjacency, Edge distance, Vertex indices, E-state

Atomic charge, Dielectric energy, salvation energy, surface energy, atomic Fukui indices, total energy, HOMO energy, LUMO energy, LUMO-

HOMO energy, dipole, Electron affinity, lonization Potential, atomic HOMO density, atomic LUMO density, atomic Electrophilic frontier density,
atomic Nucleophilic frontier density, atomic Radical frontier density, atomic Electrophilic Superdelocalizability, atomic Nucleophilic
Superdelocalizability, atomic Radical Superdelocalizability, atomic IGLO chemical shift, atomic LORG chemical shift

Spatial

Radius of gyration, Jurs descriptors, Ellipsoidal volume, Shadow area XY plane, Shadow area YZ plane, Shadow area XZ plane, Shadow area fraction

XY, Shadow area fraction YZ, Shadow area fraction XZ, Shadow length LX, Shadow length LY, Shadow length LZ, Shadow ratio, Dipole moment

spatial
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positive effects in Eq. (5). E-state S_dssC (E-state keys sums)
descriptor was the sum of electrotopological state for carbon with
two single bonds and one double bond and it has a negative index,
which means the fragment >C=decrease the selectivity. However,
compared to shadow area fraction YZ, the contribution of E-state
S_dssC to the selectivity is much smaller and could be neglected.

3.2. QSAR using structural, physicochemical, spatial and electronic
descriptor

3.2.1. Two-variable model

Eq. (6) lists the two-variable model with the highest 1 coeffi-
cient among all the two-variable models generated and selected
by GFA procedure using structural, physicochemical, spatial and
electronic descriptors.

Y =0.041094175 X11 + 2.715760376 X19 — 0.132618779  (6)

(n=16,R* = 0.757,R3dj = 0.720,Q* = 0.631, Friedman LOF
=0.006, F = 20.277)

where X11 = Molecular flexibility, X19 = LUMO (lowest unoccupied
molecular orbital) density of carbonyl oxygen atom.

This equation could explain and predict 72% and 63.1% of the
variance of the selectivity, respectively. It shows similar R?> and
Q2 values for the training set to Eq. (4), while it gives a magnitude
less Friedman LOF value than Eq. (4). In Eq. (6), molecular flexibil-
ity and LUMO density of carbonyl oxygen both have positive influ-
ence on the selectivity. And LUMO density of carbonyl oxygen has
the major contribution. LUMO density describes the distributions
of LUMO over atoms within the molecule (Singh et al., 2011).
And the LUMO density of carbonyl oxygen is a measure of relative
reactivity of the LUMO at the carbonyl oxygen atom. Liu et al.
(2008) proposed that besides IBECTC offering its HOMO (highest
occupied molecular orbital) electrons of thiocarbonyl sulfur atom
to copper atom on the surface of chalcopyrite forming -bond cop-
per atoms also donate its d-orbital electrons to the LUMO of IBECTC
forming dative-bond and as a result form a stable six-member ring
with IBECTC, which enhances the collectors’ selectivity. And Eq. (6)
suggests that the carbonyl oxygen is critical to forming the dative-
bond and that the more it contributes to LUMO the more selective
the collectors are Molecular flexibility also has positive effect on
selectivity, although its effect is negligible compared to the one
of LUMO density of carbonyl oxygen atom. And its positive effect
could be explained as molecular flexibility is favorable to collectors
forming the six-member ring with surface copper atoms.

3.2.2. Three-variable model

Eq. (7) lists the three-variable model with the highest r? coeffi-
cient among all the three-variable models generated and selected
by GFA procedure using structural, physicochemical, spatial and
electronic descriptor.

Y =0.001010463 X1 + 0.032020727 X11
+2.319610547 X19 — 0.247321190 (7)

(n=16,R* = 0.780,R%*dj = 0.725,Q* = 0.611, Friedman LOF
=0.021,F = 20.277)

where X1 = Connolly surface occupied volume, X11 = Molecular
flexibility, X19 = LUMO density of carbonyl oxygen atom.

This model is a little worse than Eq. (6) with lower Q2
(Q*=0.611) and higher Friedman LOF (LOF = 0.021) values. Besides
molecular flexibility and LUMO density of carbonyl oxygen atom,
Connolly surface occupied volume was included in this equation
and its coefficient is positive too. Similar to Eq. (6), LUMO density

of carbonyl oxygen atom has the major contribution. While, the
contribution of Connolly surface occupied volume to selectivity is
even a magnitude less than molecular flexibility. The positive influ-
ence of Connolly surface occupied volume suggests that the size of
the molecule increases the selectivity (Connolly, 1984).

3.3. QSAR using combined (topological, structural, physicochemical,
spatial and electronic) set of descriptors

3.3.1. Two-variable model

Using combined set of topological, structural, physicochemical,
spatial and electronic descriptors the following equation was the
two-variable model with the highest 1? coefficient among all the
two-variable models selected and generated by GFA procedure.

Y =2.450868414 X17 + 0.042794062 X20 — 0.155704610  (8)

(n=16,R* =0.771,R%; = 0.736,Q = 0.655, Friedman LOF

=0.019,F = 21.883)

where X17 = LUMO density of carbonyl oxygen atom, X20 = Kappa-
3.

The ability of Eq. (8) to explain (Rﬁdj =0.736) and predict
(Q?=0.655) was better than the Eq. (6). Similar to Eq. (6), LUMO
density of the carbonyl oxygen atom is the major contribution to
the selectivity. The other descriptor in this equation, Kappa-3, is
the third-order kier shape indices. And its positive coefficient sug-
gests the level of branching at the center of the molecule increase
the selectivity (Adenot et al., 1999).

3.3.2. Three-variable model

Y = -4.263367670 X3 + 0.065652445 X20
—0.322309832 X32 + 1.195719997 9)

(n=16,R* = 0.813,R%; = 0.767,Q” = 0.658, Friedman LOF
=0.018,F = 17.419)

where X3 = Hirshfeld Fukui indices (+) of thiocarbonyl sulfur atom,
X20 = Kappa-3, X32 = Chi3 cluster valence modified.

In this equation, values of R2dj = 0.767 were better than Eq. (5)
and (7). However, the Q? value (Q? = 0.658) was less than that of Eq.
(5) and more than that of Eq. (7). Hirshfeld Fukui indices (+) of
thiocarbonyl sulfur atom and Chi3 cluster valence modified are
responsible for lowering the selectivity, while Kappa-3 has positive
impact on the selectivity. Fukui functions introduced by Parr and
Yang (1984) are partial derivatives of electron density with respect
to the number of electrons. The atomic Fukui indices (+) indicate
reactivity toward nucleophiles and in some cases they are approx-
imated with LUMO densities (Cioslowski et al., 1993). Obviously,
the effect of the LUMO density of carbonyl oxygen atom on selec-
tivity, as mentioned in Eq. (6) and (7), is opposite to the effect of
Fukui indices (+) of thiocarbonyl sulfur atom in this equation. This
is not contradictory but consistent. Because quantum chemical cal-
culations indicate that LUMO of xanthogen formates and thionoc-
arbamates is mainly consisted of p-orbital of the thiocarbonyl
sulfur atom and the carbonyl oxygen atom and that the LUMO den-
sity of these two atoms generally changes in opposite ways. That is
when the Fukui indices (+) of thiocarbonyl sulfur atom of a mole-
cule increases LUMO densities of the carbonyl oxygen atom de-
creases and consequently the selectivity decreases. And this
equation proves dative-bonding of these collectors with copper
atoms on the chalcopyrite surface critical to their selectivity again.
Chi3 cluster valence modified indices measure the valence molec-



F. Yang et al./ Minerals Engineering 39 (2012) 140-148 145

1.0
I Selectivity observed
- 08
(9]
c
2
8 06
o
2
= oaf
3]
<
[0
» 02}

IAX IBXF IPETC HECTC AACTC

Collectors
(a)

1.0 1.0

I Predicted selectivity with model 2 |

08l E Predicted selectivity with model 1] 08l
0.6
04 L

0.6 - :
0.4t = 0.
02} i
0.0 0.0

Selectivity predicted
Selectivity predicted

IBXF IPETC HECTC AACTC IAX IBXF IPETC HECTC AACTC
Collectors Collectors
(b) (c)

1.0 1.0
- 0.8 - [N Predicted selectivity with model 3] 8 0.8 - I Predicted selectivity with model 4 |
5 k3]
5 ©
© 06 B o6
o a
2 2
% 0.4 | g 04 L
o 3
o ©
D o2l n 02}

0.0 0.0

IBXF IPETC HECTC AACTC 1AX IBXF IPETC HECTC AACTC
Collectors Collectors
(d) (e)
1.0 1.0
I Predi lectivity with ]

E 08| NI Predicted selectivity with model 5| g 08 G [HE Predicted selectivity with model 6 |
O ©
S ©
8 06| ? o6l
Q a
2 2
Z 044 S 04|
ks 3
$ 02| g 02|

0.0 0.0

IBXF IPETC HECTC AACTC IAX IBXF IPETC HECTC AACTC
Collectors Collectors

(f) (9)

Fig. 2. Histograms of observed and predicted with the six models of the external set compounds. (a) Observed selectivity, (b) predicted selectivity with Eq. (4), (c) predicted
selectivity with Eq. (5), (d) predicted selectivity with Eq. (6) and (e) predicted selectivity with Eq. (7).
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ular connectivity index of 3rd order cluster and demonstrate that
the presence of electronegative atoms (nitrogen, oxygen and sul-
fur) instead of carbon atoms in the molecules increases the molec-
ular connectivity index value (Kier and Hall, 1976). And in this
equation, its negative coefficient could suggest that the replace-
ment of single bonded sulfur with nitrogen in the molecule in-
creases the selectivity as it decreases Chi3 cluster valence
modified index because nitrogen is less negative than sulfur.

3.4. Tests on external predictivity

A data set of selectivity collected from flotation tests speci-
fied above was considered to qualitatively validate the external
predictivity of the six models obtained above. The set is com-
prised of five compounds including xanthates, xanthogen
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formates and thionocarbamates, which all appeared in the train-
ing set. So it could be implied that these compounds fall within
the applicability domain of the models obtained above. Fig. 2
shows the observed and predicted selectivity of the external
set compounds.

Fig. 2a shows that the order of selectivity observed is AACTC >
AECTC > IBP > IPETC > IAX, and that the selectivity of IBP, IPETC
and IAX is close and much lower than that of AACTC and AECTC.
The predicted selectivity with the six equations generally follows
this trend. However, it is worth to note that all of these six models
overestimate the selectivity of IBP. And the possible reason is that
IBP is characterized by an unusual structural feature for the train-
ing set, which is a double bond exists in its substituted alkyl
groups. Therefore, IBP could be regarded as an outlier of the
applicability domain of the six models.
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Fig. 3. A plot of observed and predicted I, values for the training set. (a) Predicted selectivity with Eq. (4), (b) predicted selectivity with Eq. (5), (c) predicted selectivity with
Eq. (6), (d) predicted selectivity with Eq. (7), (e) predicted selectivity with Eq. (8) and (f) predicted selectivity with Eq. (9).
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3.5. Overview

Genetic function approximation (GFA) has been applied to mod-
el xanthates, xanthogen formates and thionocarbamates as collec-
tors of chalcopyrite using different combinations of topological,
structural, physicochemical, electronic and spatial descriptors.
All equations showed acceptable internally cross validated squared
correlation coefficient (Q? > 0.6) and the best equation (Q? = 0.675)
was developed using topological and structural descriptors with
three variables. The predicting power of the equations were proved
qualitatively acceptable through an externally validation with a
data set from flotation tests. Scatter plots of observed versus pre-
dicted values of the training set obtained from the six models are
given in Fig. 3.

Shadow area fraction YZ, LUMO density of carbonyl oxygen
atom and Hirshfeld Fukui indices (+) of thiocarbonyl sulfur atom
is the three most significant of descriptors in the six models. It
implies that atomic LUMO properties of these collectors explained
the largest variance in their selectivity among various structural
characteristics. This seems a little surprising because in the case
of explaining the difference of xanthates and xanthate derivatives
in selectivity are usually used HOMO properties such as HOMO
energy (Liu et al., 2006 and 2008). Actually, HOMO is just an indi-
cation of collectors’ collecting power. High HOMO energy means
strong collecting power but not necessarily equals with low selec-
tivity. And this QSAR analysis revealed that the ability of accept-
ing d-orbital electrons of surface copper atom, which is measured
by atomic LUMO density and atomic Fukui indices (+) in this case,
is more critical for these collectors’ selectivity than the ability of
donating their HOMO electrons. It can be explained in such two
aspects: (1) electrons in occupied d-orbital of copper atom on
chalcopyrite surface are more easily transferring to unoccupied
orbital of collector than that of iron atom on pyrite as the chalco-
pyrite band gap was 0.6 eV and the values of pyrite band gap
were reported 0.95 eV. (2) Together with the o bonding through
donating HOMO electrons to surface copper atom, the dative IT
bonding through accepting d-orbital electrons of copper atom
results in a stable six-ring bonding between collectors and
chalcopyrite.

Other descriptors appear in the six models including shadow
ratio, E-state_dssC, molecular flexibility, Connolly surface occu-
pied volume, Kappa-3 and Chi3 cluster valence modified. These
descriptors describe the structural characteristics in favor of
forming stable six-member rings and as a result enhancing the
selectivity.

4. Conclusion

The study on the QSAR analysis of the selectivity in flotation of
chalcopyrite from pyrite for xanthates and xanthate derivatives
were performed with theoretical descriptors. The QSAR analysis
results obtained from the study provide significant statistical
parameters and the validation studies confirm that the six models
are statistically reliable and robust. The six QSAR models identi-
fied that Shadow area fraction YZ, LUMO density of carbonyl oxy-
gen atom and Hirshfeld Fukui indices (+) of thiocarbonyl sulfur
atom are the three descriptors that influence the selectivity most.
It implies that the selectivity of xanthates and xanthate deriva-
tives is determined by the strength of the dative bonding be-
tween copper atoms on the chalcopyrite surface and carbonyl
oxygen atom of these collectors and the stability of the six-mem-
ber ring formed as a result. And this explained why the selectivity
xanthates and xanthate derivatives generally follows the trend:
ethoxycarbonyl thionocarbamate > xanthogen formates > N-
alkyl-thionocarbamates > xanthates.

On the other hand, the six models could be used together to as-
sess the selectivity in flotation of chalcopyrite from pyrite for new
candidate molecules in the series of compounds we studied.
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