[文章编号] 1004-0609(2002)01-0187-04

闪锌矿(110)表面离子吸附的动力学模拟[®]

孙 伟,胡岳华,邱冠周,徐 竟 (中南大学矿物工程系,长沙410083)

[摘 要] 为了查清高碱电位环境对闪锌矿表面性质抑制作用的根本原因,采用 C^2 Soterware 分子力场中的万能力场方法,对闪锌矿(110)表面 $CaOH^+$ 和 OH^- 两种离子的吸附进行了动力学模拟,并对吸附能和吸附质量云图进行了分析。模拟结果表明,相对于 OH^- 来说。 $CaOH^+$ 在闪锌矿(110)表面的吸附能更负,吸附量更大。由此可知这些吸附在表面的离子又与 OH^- 和硫化矿氧化产物产生的 SO_4^{2-} 等离子作用形成不溶性亲水表面产物,从而导致矿物受到抑制,这也正是高碱电位调控成功的原因之一。

[关键词] 吸附; 分子力场方法; 闪锌矿; 硫化矿浮选 [中图分类号] TD 923

[文献标识码] A

复杂多金属硫化矿的分离一直是世界选矿界的 难题,而铅锌分离是硫化矿浮选分离的典型代表。 铅锌分离的困难在于二者可浮性相近,硫化矿捕收 剂选择性较差。经过近20年的研究,人们成功地开 发出了高碱电位调控浮选技术,成功地解决了这个 难题,并首次在我国获得了工业上的应用[1~5]。目 前,电位调控浮选技术在我国已成功地应用于铅锌 铁多金属硫化矿的浮选分离。特别是在我国最大的 铅锌矿凡口矿得到应用。然而,高碱电位调控浮选 的理论方面还有许多值得研究的地方。高碱电位调 控下, 闪锌矿与黄铁矿被选择性受到抑制(无需添 $m \operatorname{ZnSO}_4$),红外研究 $^{[1]}$ 表明在以石灰调浆的高碱 条件下在闪锌矿和黄铁矿表面都有亲水性含钙化合 物生成,而方铅矿表面并没有此类化合物形成,由 此可以推测该系化合物在矿物表面的吸附可能是高 碱电位调控工艺成功的一个重要原因。本研究的目 的在干对这种吸附行为的机理进行微观层次的考 察,进一步获得有价值的数据。

1 力场与模型

研究采用 C² 软件包的 Sorption 模块对闪锌矿 吸附各种相关离子的行为进行动力学模拟。根据矿物学原理^[5],闪锌矿最可能的解理面为(110)面,因此计算模型也依据闪锌矿(110)面进行构建,模型如图 1 所示。模型构建时,先用 Cleavage 模块对

已经构建好的闪锌矿晶体进行(110)面的解理,然后用 Crystal Builder 模块再对解理面进行三维处理,最终得到上面模型。全部计算均采用吸附动力学模拟模块(Sorption)进行计算,模拟步骤为 100万步,每步为 1 fs,模拟温度为 298 K,压力为 100 kPa。首先进行了两种离子的单独吸附模拟,最后又进行了共吸附的模拟。

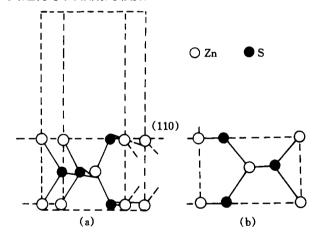


图 1 ZnS(110)面的结构模型

Fig. 1 Model of ZnS(110)

(a)—Side view; (b)—Vertical view

吸附动力学模拟采用 Rappe 所推导的万能力场^[6~8] (Universal Force Field),该力场可以用来表述周期表所有元素之间的二体、三体以及多体作用能。UFF 力场中物质之间相互作用能可以描述为

(1)

式中 E_{band} 为成键作用, E_{nonbond} 为非键作用。成键 作用又可进行细分:

$$E_{\text{bond}} = E_R + E_{\theta} + E_{\omega} + E_{\varphi} \tag{2}$$

$$E_{\text{no nbo nd}} = E_{\text{vdw}} + E_{\text{el}} \tag{3}$$

下面对以上各项——说明:

1) 键长伸缩振动能

 $E = E_{\text{bond}} + E_{\text{nonbond}}$

 E_R 为键的伸缩振动能,有两种表示方式:

$$E_R = 1/[2k_U(r - r_U)^2] \tag{4}$$

$$E_R = D_U \{ \exp[-\alpha(r - r_U)] - 1 \}^2$$
 (5)

式中 k_{IJ} 为力常数, $k_{IJ}/(\text{mol °Å}^{-2})$; r_{IJ} 为键长, D_{II} 为键的分裂能, kJ/mol;

$$\alpha = \left[k_{IJ}/2D_{IJ} \right]^{1/2} \tag{6}$$

上述两式前者是把键的伸缩作为谐波振子 (harmonic oscilltor)进行处理,后者使用莫斯函数 (Morse function)进行处理,后者比前者具有更高的 精确度。在计算物质间成键能时必须注意以下几个 因素。

 r_{U} 表示键长,UFF 力场对键长作了如下规定。

$$r_{IJ} = r_I + r_J + r_{BO} + r_{EN}$$
 (7)

式中 r_I , r_I 为成键物质 I, I 的原子半径, r_{BO} 为 键序修正参数,

$$r_{\rm BO} = -\lambda (r_I + r_J) \ln n \tag{8}$$

n 为成键数目, λ 为比例常数: r_{EN} 为电负性矫正系 数,

$$r_{\text{EN}} = r_I r_J (\chi_I^{V2} - \chi_J^{V2}) / (\chi_J r_I + \chi_J r_J)$$
 (9)

式中 χ_i , χ_i 为 I_i , J 的电负性。

 k_{IJ} 表示力常数,

$$k_{IJ} = (\frac{\partial E}{\partial R^2})_0 = 664.12 \frac{Z_I^* Z_J^*}{r_{IJ}^3}$$
 (10)

式中 Z_{I}^{*} , Z_{J}^{*} 为作用物质 I,J 的有效电荷

2) 键角的扭曲、弯曲和反转能

 E_{θ} , E_{ω} , E_{ϕ} 分别为键角的弯曲振动能、扭曲 振动能和反转振动能,其中

$$E_{\theta} = K_{UKL} \sum_{n=0}^{m} C_n \cos(n\theta)$$
 (11)

$$E_{\phi} = K_{UKL} \sum_{n=0}^{m} C_n \cos(n \phi_{UKL})$$
 (12)

$$E_{\omega} = K_{IJKL}[C_0 + C_{1\cos}(\omega_{IJKL}) + C_{2\cos}(2\omega_{IJKL})]$$
(13)

式中 K_{LJKL} 为力常数,C 代表协同因子, θ , ω 和 ϕ 分别代表弯曲、扭曲和反转的角度。

3) 范德华力(Van der Waals)E_{vdw}

$$E_{\text{vdw}} = D_{IJ} \{-2 \left[\frac{x_{IJ}}{x}\right]^{6} + \left[\frac{x_{IJ}}{x}\right]^{12} \}$$
 (14)
?1994-2015 China Academic Journal Electronic Publishing House

式中 D_{IJ} 为势阱深度, x_{IJ} 为 I,J 的范德华半径之 n, x 为与距离有关的变量。

4) 静电力 Eel

$$E_{el} = 332.0637(\frac{Q_I Q_I}{\varepsilon R_{I,J}}) \tag{15}$$

式中 Q_I , Q_I 为 I, J 所携带的电量, ε 为介电常 数, R_{II} 为 I 和J 之间的距离。

结果与讨论

溶液化学计算[9] 得知,在以氢氧化钙调浆的高 碱性介质中,优势离子组分主要是 CaOH + 以及 OH一,而且在浮选所适宜的电位内,这两种离子虽 然与矿物表面没有电子交换作用, 但对于矿物表面 的亲水疏水平衡以及浮选电化学行为有重要的影 响,因此本研究着重对闪锌矿与 CaOH + 以及闪锌 矿与OH⁻进行了吸附模拟。

2.1 吸附能及吸附量分析

图 2 和 3 分别列出了 CaOH⁺, OH⁻ 两种离子 吸附能和吸附量随模拟时间的变化情况。这些图表 明, 当模拟步骤大干 400 000 时, 两种离子的吸附 能和吸附量都达到了稳定状态。这证明 1 000 000 的模拟步骤是合适的。从吸附能和吸附量的变化趋 势来看,吸附能以 CaOH⁺最低,且吸附量最大。

表 1 列出了吸附模拟结果的吸附量和吸附能。 从两种离子在ZnS(110)表面的吸附自由能分析, CaOH⁺ 的吸附能为— 1.964 78 kJ/mol, OH⁻吸附能 为 -0.97469 kJ/mol。因 而,CaOH⁺ 的 吸 附 量,

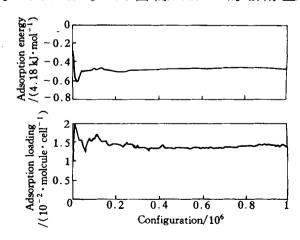


图 2 CaOH⁺ 在 ZnS(110) 面吸附模拟时平均吸附量与 吸附能随模拟步骤的变化

Fig. 2 Change of average loading and energy in CaOH⁺ adsorption on ZnS (110) All Highls reserved. http://www.cnki.net

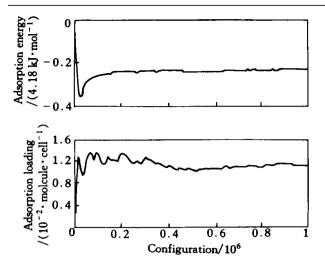


图 3 OH 在 ZnS(110)面吸附模拟时平均吸附量与 吸附能随模拟步骤的变化

Fig. 3 Change of average loading and energy in OH⁻ adsorption on ZnS(110)

表 1 单独吸附模拟的吸附量与吸附能

Table 1 Sorption loading and sorption energy of single sorption simulation

Sorbate	OH-	C aOH+
Average loading/ (molecule ° cell ⁻¹)	0. 01146	0. 014 14
$Averagefreeenergy/(kJ^{\circ}mol^{-l})$	- 0 . 97469	- 1 . 964 78
$Isosteric heat/ (kJ^{\circ} mol^{-1})$	3. 244 85	4. 234 90

 $0.014\,14$ mol/cell,比 OH^- 的 $0.011\,46$ mol/cell 大。这个结果表明,相对于 OH^- 来说, $CaOH^+$ 更容易在 ZnS(110)表面吸附。这些吸附在表面的离子又与 OH^- 和硫化矿氧化产物产生的 SO_4^{2-} 等离子作用形成不溶性亲水表面产物,从而导致矿物受到抑制,这也正是高碱电位调控成功的原因之一。这个结论与红外研究结果[1] 相一致。

2.2 吸附质量分布云图分析

图4(a)和(b)所示为OH⁻,CaOH⁺ 两种离子吸附的质量分布云图,从质量分布云图来看,OH⁻ 的分布范围明显大于 CaOH⁺,也就是说,OH⁻ 与 ZnS 表面的作用力对距离的敏感程度小于 CaOH⁺,结合前面力场介绍以及吸附平衡时云图中心与矿物表面的距离可以推断,CaOH⁺ 与 ZnS 的作用可能是以轨道相互作用为主,而OH⁻ 可能介于两者之间。

2.3 共吸附模拟结果分析

为了更好的模拟实际浮选情况,我们进行了共 吸附模拟。共吸附模拟结果列于表 2。从表 2可以

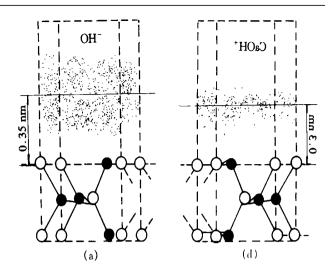


图 4 OH⁻和 CaOH⁺的质量云图分布 Fig. 4 Quality distribution cloud of OH⁻ and CaOH⁺ (a)—OH⁻: (b)—CaOH⁺

看出,两种离子共存时,Z n S(110)表面 $CaOH^+$ 的 吸附比 OH^- 多。

表 2 共吸附模拟的吸附量与吸附能

Table 2 Sorption loading and sorption energy of co-sorption simulation

Sorbate	OH^-	CaO H ⁺
A verage loading/(molecule°cell ⁻¹)	0. 010 46	0. 017 40
Average free energy/ $(kJ^{\circ}mol^{-1})$	- 0. 974 69	- 1. 964 78
Isosteric heat/ (kJ°mol ⁻¹)	3. 244 85	4. 234 90

 $CaOH^{+}$ 之所以比 OH^{-} 更多的吸附在 ZnS(110) 表面,还需要进一步研究。可以从软硬酸碱理论 $^{[10]}$ 得出解释,根据软硬酸碱理论, OH^{-} 属于硬碱。 $CaOH^{+}$ 由于 OH^{-} 的中和成为中等强度的酸,而 ZnS(110) 表面悬挂键处都为软酸或软碱。因此相比较而言, $CaOH^{+}$ 更容易在 ZnS(110) 表面吸附。

3 结论

从两种离子在 ZnS(110)表面的吸附动力学模拟得知, $CaOH^+$ 在 ZnS(110)表面的吸附最为有利,吸附能最小。

由此结论可以推测,这些吸附在表面的离子又与 OH⁻和硫化矿氧化产物产生的 SO² 等离子作用形成不溶性亲水表面产物,从而导致矿物受到抑制,这也正是高碱电位调控成功的原因之一。 制,这也正是高碱电位调控成功的原因之一。

[REFERENCES

- [1] 顾帼华. 硫化矿磨矿体系的机械电化学研究 [D]. 长沙: 中南工业大学, 1998.
 GU Guo-hua. Research on Principle of OPT [D]. Changsha, Central South University of Technology, 1998.
- [2] 覃文庆. 硫化矿颗粒的电化学行为和电位调控浮选技术[D]. 长沙: 中南工业大学, 1997. QIN Wen-qing. Electrochemistry Mechanic of Sulfide Particle and Potential control Technique [D]. Changsha; Central South University of Technology, 1997.
- [3] LIU Ru-yi, SUN Shui-yu. A development on selective flotation of galena from lead-zinc-iron sulfide ores in China
 [J]. Transaction of Nonferrous Metals Society of China, 2000, 10(Suppl. 1); 40—48.
- [4] SUN Shui-yu, LIU Ru-yi. An electrochemical investigation on the collectorless flotation of sphalerite in the presence of Cu²⁺ ions [J]. Transaction of Nonferrous Metals Society of China, 2000, 10(Suppl. 1): 56—60.
- [5] 郑 辙. 结构矿物学导论 [M]. 北京: 北京大学出版

社, 1988.

ZHENG Zhe. Introduction Structure Mineralogy [M]. Beijing: Beijing University Press, 1988.

- [6] Rappe A K, Casewit C J, Colwell K S. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations [J]. J Am Chem Soc. 1992, 114; 10024—10035.
- [7] Casewit C J. Colwell K S. Application of a universal force field to organic molecules [J] . J Am Chem Soc 1992, 114, 10035—10046.
- [8] Casewit C J. Colwell K S. Application of a universal force field to main group compounds [J]. J Am Chem Soc, 1992, 114; 10046—10055.
- [9] 胡岳华, 王淀佐. 浮选溶液化学 [M]. 长沙: 湖南科学技术出版社, 1992. HU Yue-hua, WANG Dian-zuo. Solution Chemistry of

Flotation [M]. Changsha: Hunan Science and Technology Press, 1992.

[10] 杨 频, 高孝辉. 性能-结构-化学键[M]. 北京. 高等教育出版社, 1985.

YANG Pin. GAO Xiao-hui. Property-Structure Bond [M]. Beijing: Higher Education Press 1985.

Dynamic simulation of ion adsorption on ZnS(110)

SUN Wei, HU Yue-hua, QIU Guan-zhou, XU Jing (Department of Mineral Engineering, Central South University, Changsha 410083, China)

[**Abstract**] The adsorption action of CaOH⁺ and OH⁻ on ZnS(110) was simulated by molecular-force-field method. The adsorption energy and quality distribution clouds was analyzed. The result indicates that there is more affinity between CaOH⁺ and ZnS(110) than that between OH⁻ and the mineral surface. The result gives a good explanation for success of potential-control technique used in Fankou Lead-Zinc Plant.

[Key words] sorption; molecular-force-field-method; sphalerite; sulfide-flotation

(编辑 何学锋)