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DFT research on activation of sphalerite
①
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Abstract:Activation of sphalerite ZnS , (Zn , Fe)S , (Zn , Cu)S were carried out using the density functional theory
(DFT)method.The electronic structures and related proper ties of three kind o f zinc sulfide compounds w ere investigated.
In addition , the relation be tw een electronic structure and flotation behavior was discussed.The results show tha t , ZnS has
a broader band gap than(Zn , Cu)S and(Zn , Fe)S do , and it has low electrochemistry activity to react with flotation col-
lectors to render the surface hydrophobic.When the Zn atom in ZnS is replaced by Cu a tom , the band gap will be re-
duced , and the top valence band will be occupied by Cu 3d o rbit , thus it is beneficial to the interaction betw een mineral
surface and collector.
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1　INTRODUCTION

Sphalerite , which is also known as blende , is an
important mineral of zinc.Most natural sphaleri tes
contain iron more or less in lat tice depended on chem-
ist ry envi ronment and temperature[ 1] .High-iron-con-
tent sphalerite is called marmatite.Some w orks show
that the presence of Fe in the sphalerite lat tice is thought
to have a significant effect on the surface properties of ZnS

minerals[ 2 4] .
In general , sphalerite has a poor flotation re-

sponse to xanthate collectors due to the solubility of
Zn-xanthate species , but it can be activated by other
transition metal ions such as Cu(Ⅱ), Pb(Ⅱ), Ag
(Ⅰ), Au(Ⅰ), Cd(Ⅱ)and Fe(Ⅱ)[ 5 , 6] .Activating
behavior of Cu2+on ZnS has been investigated ex ten-
sively[ 7 9] .During activation , it is generally accepted
that Cu

2+
ion
[ 10 , 11]

can replace Zn
2+
ion at the miner-

al surface and the xanthate collector w ill react with

the Cu ions , but we are not sure w hy (Zn , Cu)S is
easier to be floated than ZnS.

Although sulfide flotation process has been stud-
ied ex tensively , it is still not clear.It is complicated
and involves a lot of af fecting factors including surface

property and reaction at mineral surface.Salamy and
Nixon

[ 12]
proposed a model based on mixed-po tential

theory.In this model , the oxidation of mineral sur-
face or xanthate w as accompanied by the reduct ion of

dissolved oxygen.This kind of elect rochemist ry reac-
tion made sulfide floatable.The model does not take
the semiconducto r property of sulfide into account.
Plaskin proposed that the adsorpt ion of O2 on sulf ide

surface would convert the surface f rom N-type to P-
type by elect ron t rapping .The P-type surface is apt
to adso rb flotation reagent.

The semiconducto r properties of ZnS and transi-
tion metal doped ZnS has been ex tensively studied be-
cause these materials are commercially used in phos-
pho r and also in thin-film elect roluminescence de-
vices[ 13 19] .Recently , iron or zinc sulfides have at-
t racted particular interest in the f ield of solar energy
conversion ow ing to their favo rable absorption coeff i-
cients and energy gap characteristics.Their wo rks
show that doped ions can dramatically change the sur-
face properties of ZnS and form a new class of lumi-
nescent.

One approach of better understanding of the
properties of solid is to model the electron structure

w ith quantum mechanical methods.In order to gain
an insight into the physical and chemical properties of

the surface , it is necessary to know the bulk and sur-
face material propert ies.

In this study , the autho rs employ densi ty func-
tional theory(DFT)to calculate the elect ron struc-
tures of sphalerite , marmati te and (Zn , Cu)S in or-
der to investigate the effect of Cu and Fe ions on the
semiconductor properties of ZnS , and then to discuss
the mechanism of activation flotation of sphalerite.

2　MODEL OF CALCULATION

The elect ric-st ructure calculation presented here
w as perfo rmed using CASTEP computer code , which
is based on density funct ional theory , aided by the
CERIUS2 graphical f ront-end.The w ave functions
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were expended in a plane w ave basis set , and the ef-
fective potential of ions w as described by ultrasof t
pseudopo tentials.

Structure of sphalerite and marmati te is analo-
gous to the diamond structure , as show n in Fig.1.
The structure is a unit cube with zinc atoms at the
corners and face centers.The space g roup of spha-
lerite and marmatite is F-43m.The initial ZnS latt ice
parameter used in calculation is a =0.543 nm .The
distance between sulfur and neighbo r zinc is 0.234
nm and the distance betw een tw o neighbor S o r Zn

atom is 0.383 nm.The pseudopo tentials were tested
by optimizing the structure of bulk ZnS and compar-
ing w ith the experimental data.In the structure opti-
mization , the generalized gradient approximation

(GGA)-PW91 is used for exchange-correlation func-
tion.

In optimization of the bulk structure , the cell
parameters fo r DFT calculations were in good ag ree-
ment w ith those found experimentally.For ZnS and
marmatite , a is 0.541 nm and 0.542 nm , respec-
tively , while the experimental values are 0.540 6 nm
and 0.542 5 nm(H.M .Steele2003).Optimized cell
parameters of ZnCuS is 0.543 nm.The data for ZnS
and ZnFeS have proved that the DFT methods is ac-
curate enough.In marmatite or ZnCuS , one Zn atom
displaced by Fe or Cu atom , and the substituting per-
centage is 25%.

3　CALCULATION RESULTS

The energy bands of frontier elect rons in semi-
conductors consist of a valence band fully occupied by
electrons at low levels , a vacant conduction band at
high energy levels;and a forbidden band called the
band gap which separates the former two bands.Fig.

2 show s the calculated band st ructure of sphaleri te a-
long selected high-symmetry lines w ithin the fi rst
Brillouin zone of FCC lat tice.The corresponding total
density of state(DOS)is also show n in Fig .2 and par-
tial DOS of every element is shown in Fig.3.The re-
sults are in good agreement with o ther DFT

w orks[ 20 , 21] .In Fig.2 , the band gap is calculated to
be 2.4 eV.It is smaller than the experimental band
gap , which is measured to be 3.6 eV

[ 22]
.The

valance band of sphalerite has been studied by using

X-ray pho toemission spect ra (XPS)[ 23 ,24] .Their
spect ra show the features that can be recognized in

the calculated DOS in Fig.3.The S 3s orbit is lo-
cated in the interval from -14.5 eV to -12.5 eV.
This is in agreement w ith the w orks repo rted by San-
toni et al

[ 25]
.Fig.3 show s some hybridizat ion of Zn

3s , 3p and S 3p orbits in the interval from 0 to -5
eV , which is the area of Zn—S bond.The bot tom of
the conduction band is a mix ture of Zn 4s and S 3p

orbits , because it derived f rom Zn—S antibond.
The calculated band st ructure of marmatite is

show n in Fig.4.The corresponding to tal densi ty of
state(DOS)is also show n in Fig .4 and partial DOS of
every element is show n in Fig.5.It can be seen that
w hen the Zn atom is replaced by Fe atom , the band
gap reduces(0.5 eV), and this phenomenon is in
good co rrespondences w ith researches of Kashyout et

al[ 26 ,27](<0.6 eV).Fe 3d and S 3p occupy the top
of the valence band implying that there is bonding be-
tw een Fe and S atom.The bot tom of the conduct ion
band is composed of S 3s and S 3p.The peaks in the
interval f rom -2 eV to -8 eV come from S 3p or-
bit.The Zn 3d orbit in marmatite is located at the in-
terval around -7.5 eV.The S s o rbit below the va-
lence band is divided into two energy intervals from -13
eV to -15 eV and from 0 eV to -5 eV.

Fig.1　Crystal st ructure of sphalerite and marmatite
(a)—Sphalerite;(b)—Marmatite
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Fig.2　Calculated band st ructure(a)and corresponding total density of state(b)of sphalerite

Fig.3　Calculated part ial density of state of elements in ZnS

　　The main features of(Zn , Cu)S band st ructure
are given in Fig.6.The corresponding total densi ty of
state(DOS)is also show n in Fig.6 and partial DOS
of every element is given in Fig.7.Compared with
Fig.2 and Fig.4 , ZnCuS has a band gap(1.6 eV)

larger than marmatite does and less than sphalerite
does.Most of states in valence band which is located
f rom -5 eV to 0 eV are occupied by Cu 3d orbit ,
and only a handful of them are occupied by Zn 4p and

S 3p orbits.Other peaks in Fig.7 can also be seen in
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Fig.4　Calculated band structure(a)and corresponding total density of state(b)of marmat ite

Fig.5　Calculated partial density of state of elements in marmatite
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Fig.6　Calculated band structure(a)and co rresponding total density of state(b)of(Zn , Cu)S

Fig.7　Calculated partial density of state of elements in(Zn , Cu)S
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Fig.5.

4　DISCUSSION

4.1　Effect of doped ions on highest occupied orbit

In the light of mixed po tential model
[ 13 , 14 ,28]

, it
can be concluded that the oxidation of sulfide has a

pronounced ef fect on sulfide mineral flotation.The
oxidat ion w ill produce metal ions on mineral surface
and these ions will react w ith collectors to render the

surface hydrophobicity.
From the DOS patterns shown in Fig s.3 , 5 and

7 , marmat ite and (Zn , Cu)S are the int rinsic semi-
conductors and sphaleri te is a broad band semiconduc-
tor.The top valence bands of above three materials
are dominantly occupied by Fe 3d , S 3p , and Cu 3d
o rbits , respectively.According to the f rontier orbi tal
theory , the elect rons in highest occupied state are
most easily bound and have an unexpectedly great sig-
nif icance for the chemical reactivity of materials.It
indicates that the different reduction or oxidation w ill
happen on the three mineral surfaces in the pulp dur-
ing flotation system.

Based on Patt ricks w ork[ 29] , marmatite is easy
to be oxidized than sphalerite and Fe at the(Zn , Fe)S
surface.There is also some references to show that
the ZnS surface is resistant to oxidation but oxidation

of the ZnS surface af ter Cu activat ion is apparent[ 24] .
All these studies imply that ZnS has low elect ro-
chemistry activity .

ZnS is a broad band semiconductor , and the elec-
trons in the fully occupied valence band are difficult to
be exci ted up to the conduction band.There are less
free elect rons in ZnS , and then it is not easy to accel-
erate the elect rochemist ry oxidation of surface.That
is to say , ZnS is difficult to be dissoluted f rom miner-
al surface and has li ttle chance to react wi th thio-col-
lectors.When being substituted by Cu o r Fe ions , the
forbidden gap of doped ZnS w ill decrease and the
quantity of f ree electrons in ZnS w ill increase.This
v ariation w ill enhance the electrochemistry activity of
ZnS.

4.2　Effects of doped ions on mixed potential

Marmati te has a narrow er band gap than (Zn ,
Cu)S does , thus it should be mo re easily o xidized
than(Zn , Cu)S should.But in fact , the sphalerite
af ter Cu activat ion has the most ex cellent f lotat ion re-
sponse using xanthate.These phenomena can be ex-
plained by mixed po tential theory.

When a system has more than one redox couple ,
which has dif ferent reversible potentials.In such a
case , a po tential at w hich the rate of cathodic process
of one redox couple w ill be equal to the rate of anodic
process of the other redox couple is measured.Such a
potential is located between the reversible potent ial of
the tw o couples , and so is called “mixed poten-

tial”[ 30] .This potential also related wi th elect rode
material , this to say , different elect rode w ill get dif-
ferent mixed potential f rom the same solution.

According to the mixed potential theory , an an-
odic reaction can occur only if there is a cathodic reac-
tion proceeding at f inite rate at that potential[ 31] .For
the flotation sy stems , the cathodic reaction is usually
given by the reduction of oxygen:

2H2O ※O2+4H
++4e

E r=1.23-0.059pH (1)
The co rresponding anodic reaction involves inter-

action of x anthate on the sulfide minerals in various

w ays:
1)Reaction of xanthate w ith the sulfide mineral

(MS)to form metal xanthate(MXn):
MS+2X-※MX2+S

0+2e (2)
or　MS+2X-+4H 2O

-※MX2+SO
2-
4 +8e (3)

2)Oxidation of xanthate to dixanthogen(X2)at
the mineral surface:

2X-※X2+2e (4)
The mixed potential of the sulf ide mineral in the

f lotation pulp w ill be used to determine the oxidat ion

product on its surface.If the mixed po tential of the
mineral in the presence of oxygen , xanthate and o ther
reagents is above the mixed potential for X-/X2 re-
dox couple , reaction(1)will produce dixanthogen on
the surface.If the mixed potential is low er than
X-/X2 redox couple , reaction(2)w ill take place and
metal xanthate w ill render the surface hydrophobic.

A lot of w orks show that the existence of Fe ions
on solid surface can catalyze the oxygen reduction.It
indicates that the rate of oxygen reduction on mar-
matite is larger than that on (Zn , Cu)S , which will
cause the mixed po tential of marmatite to be higher
than those of (Zn , Cu)S and ZnS.This process can
be illustrated in Fig.8.
(Zn , FeS)has the highest mixed po tential in

three kinds of sphalerite.On the marmatite sur-
face , xanthate is easy to be oxidized to dixanthogen

Fig.8　Schemat ic of mixed po tential of
marmatite and(Zn , Cu)S
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which is in ag reement w ith Q INs studies[ 31] .It can
explain w hy (Zn ,Fe)S has dif ferent floatabili ty com-
pared wi th(Zn ,Cu)S.
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